Structural analysis of a series of antiviral agents complexed with human rhinovirus 14.

نویسندگان

  • J Badger
  • I Minor
  • M J Kremer
  • M A Oliveira
  • T J Smith
  • J P Griffith
  • D M Guerin
  • S Krishnaswamy
  • M Luo
  • M G Rossmann
چکیده

The binding to human rhinovirus 14 of a series of eight antiviral agents that inhibit picornaviral uncoating after entry into host cells has been characterized crystallographically. All of these bind into the same hydrophobic pocket within the viral protein VP1 beta-barrel structure, although the orientation and position of each compound within the pocket was found to differ. The compounds cause the protein shell to be less flexible, thereby inhibiting disassembly. Although the antiviral potency of these compounds varies by 120-fold, they all induce the same conformational changes on the virion. The interactions of these compounds with the viral capsid are consistent with their observed antiviral activities against human rhinovirus 14 drug-resistant mutants and other rhinovirus serotypes. Crystallographic studies of one of these mutants confirm the partial sequencing data and support the finding that this is a single mutation that occurs within the binding pocket.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16.

Rhinoviruses are a frequent cause of the common cold. A series of antirhinoviral compounds have been developed that bind into a hydrophobic pocket in the viral capsid, stabilizing the capsid and interfering with cell attachment. The structures of a variety of such compounds, complexed with rhinovirus serotypes 14, 16, 1A, and 3, previously have been examined. Three chemically similar compounds,...

متن کامل

Human rhinovirus 3 at 3.0 A resolution.

BACKGROUND The over 100 serotypes of human rhinoviruses (HRV) are major causative agents of the common cold in humans. These HRVs can be roughly divided into a major and minor group according to their cellular receptors. They can also be divided into two antiviral groups, A and B, based on their sensitivity to different capsid-binding antiviral compounds. The crystal structures of HRV14 and HRV...

متن کامل

Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses.

X-Ray diffraction data have been obtained for nine related antiviral agents ("WIN compounds") while bound to human rhinovirus 14 (HRV14). These compounds can inhibit both viral attachment to host cells and uncoating. To calculate interpretable electron density maps it was necessary to account for (1) the low (approximately 60%) occupancies of these compounds in the crystal, (2) the large (up to...

متن کامل

A novel basis of capsid stabilization by antiviral compounds.

Picornaviruses are inactivated by a family of hydrophobic drugs that bind at an internal site in the viral capsid and inhibit viral uncoating. A basis for the capsid stabilization previously unrecognized is revealed by molecular dynamics simulations of the antiviral drug WIN52084s bound to a hydrophobic pocket of solvated human rhinovirus 14. Isothermal compressibilities of the complex and huma...

متن کامل

Synthesis and anti-rhinovirus properties of fluoro-substituted flavonoids.

Fluoro-substituted flavones and 2-styrylchromones, related to natural and synthetic flavonoids previously described, were prepared, characterized and tested for anti-rhinovirus activity. Structural elucidation of the new compounds was performed by IR, NMR spectra and X-ray crystal structure analysis for 6-fluoro-3-hydroxy-2-styrylchromone. The antiviral potency was evaluated by a plaque reducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 10  شماره 

صفحات  -

تاریخ انتشار 1988